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Abstract 

We present ongoing work on a project for automatic recognition of spon- 
taneous facial actions. Spontaneous facial expressions differ substan- 
tially from posed expressions, similar to how continuous, spontaneous 
speech differs from isolated words produced on command. Previous 
methods for automatic facial expression recognition assumed images 
were collected in controlled environments in which the subjects delib- 
erately faced the camera. Since people often nod or turn their heads, 
automatic recognition of spontaneous facial behavior requires methods 
for handling out-of-image-plane head rotations. Here we explore an ap- 
proach based on 3-D warping of images into canonical views. We eval- 
uated the performance of the approach as a front-end for a spontaneous 
expression recognition system using support vector machines and hidden 
Markov models. This system employed general purpose learning mech- 
anisms that can be applied to recognition of any facial movement. The 
system was tested for recognition of a set of facial actions defined by 
the Facial Action Coding System (FACS). We showed that 3D tracking 
and warping followed by machine learning techniques directly applied to 
the warped images, is a viable and promising technology for automatic 
facial expression recognition. One exciting aspect of the approach pre- 
sented here is that information about movement dynamics emerged out 
of filters which were derived from the statistics of images. 

1 Introduction 

Much of the early work on computer vision applied to facial expressions focused on rec- 
ognizing a few prototypical expressions of emotion produced on command (e.g. "smile"). 
These examples were collected under controlled imaging conditions with subjects deliber- 
ately facing the camera. Extending these systems to spontaneous facial behavior is a critical 
step forward for applications of this technology. Spontaneous facial expressions differ sub- 
stantially from posed expressions, similar to how continuous, spontaneous speech differs 
from isolated words produced on command. Spontaneous facial expressions are medi- 
ated by a distinct neural pathway from posed expressions. The pyramidal motor system, 
originating in the cortical motor strip, drives voluntary facial actions, whereas involuntary, 
emotional facial expressions appear to originate in a subcortical motor circuit involving 



the basal ganglia, limbic system, and the cingulate motor area (e.g. [15]). Psychophysi- 
cal work has shown that spontaneous facial expressions differ from posed expressions in a 
number of ways 161. Subjects often contract different facial muscles when asked to pose 
an emotion such as fear versus when they are actually experiencing fear. (See Figure lb.) 
In addition, the dynamics are different. Spontaneous expressions have a fast and smooth 
onset, with apex coordination, in which muscle contractions in different parts of the face 
peak at the same time. In posed expressions, the onset tends to be slow and jerky, and the 
muscle contractions typically do not peak simultaneously. 

Spontaneous facial expressions often contain much information beyond what is conveyed 
by basic emotion categories, such as happy, sad, or surprised. Faces convey signs of cog- 
nitive state such as interest, boredom, and confusion, conversational signals, and blends of 
two or more emotions. Instead of classifying expressions into a few basic emotion cate- 
gories, the work presented here attempts to measure the full range of facial behavior by 
recognizing facial animation units that comprise facial expressions. The system is based 
on the Facial Action Coding System (FACS) 171. 

FACS [7] is the leading method for measuring facial movement in behavioral science. It 
is a human judgment system that is presently performed without aid from computer vi- 
sion. In FACS, human coders decompose facial expressions into action units (AUs) that 
roughly correspond to independent muscle movements in the face (see Figure 1). Ekman 
and Friesen described 46 independent facial movements, or "facial actions" (Figure 1). 
These facial actions are analogous to phonemes for facial expression. Over 7000 distinct 
combinations of such movements have been observed in spontaneous behavior. 

AUI 
Inner Brow Raiser , 1 +2 
(Central Frontalis) 

.AU2 . 
Outer Brow Raiser 1 +4 
(Lateral Frontalis) 

AU4 
Brow Lower 
(Cormgas, 1+2+4 

Depressor Supercilli, . . 
Depressor Glaballae) 

Figure 1: The Facial Action Coding System decomposes facial expressions into component 
actions. The three individual brow region actions and selected combinations are illustrated. 
When subjects pose fear they often perform 1+2 (top right), whereas spontaneous fear 
reliably elicits 1+2+4 (bottom right) [6]. 

Advantages of FACS include (I) Objectivity. It does not apply interpretive labels to ex- 
pressions but rather a description of physical changes in the face. This enables studies of 
new relationships between facial movement and internal state, such as the facial signals 
of stress or fatigue. (2) Comprehensiveness. FACS codes for all independent motions of 
the face observed by behavioral p~sychologists over 20 years of study. (3) Robust link with 
ground truth. There is over 20 years of behavioral data on the'relationships between FACS 
movement parameters and underlying emotional or cognitive states. Automated facial ac- 
tion coding would be effective for human-computer interaction tools and low bandwidth 
facial animation coding, and would have a tremendous impact on behavioral science by 
making objective measurement more accessible. 

There has been an emergence of groups that analyze facial expressing into elementary 
movements. For example, Essa and Pentland [8] and Yacoob and Davis 1161 proposed 
methods to analyze expressions into elementary movements using an animation style cod- 
ing system inspired by FACS. Eric Petajan's group has also worked for many years on 



methods for automatic coding of facial expressions in the style of MPEG4 151, which codes 
movement of a set of facial feature points. While coding standards like MPEG4 are use- 
ful for animating facial avatars, they are of limited use for behavioral research since, for 
example, MPEG4 does not encode some behaviorally relevant facial movements such as 
the muscle that circles the eye (the orbicularis oculi, which differentiates spontaneous from 
posed smiles 161). It also does not encode the wrinkles and bulges that are critical for dis- 
tinguishing some facial muscle activations that are difficult to differentiate using motion 
alone yet can have different behavioral implications (e.g. see Figure lb.) One other group 
has focused on automatic FACS recognition as a tool for behavioral research, lead by Jeff 
Cohn and Takeo Kanade. They present an alternative approach based on traditional com- 
puter vision techniques, including edge detection and optic flow. A comparative analysis 
of our approaches is available in [l, 4, 101. 

2 Factorizing rigid head motion from nonrigid facial deformations 

The most difficult technical challenge that came with spontaneous behavior was the pres- 
ence of out-of-plane rotations due to the fact that people often nod or turn their head as 
they communicate with others. Our approach to expression recognition is based on statis- 
tical methods applied directly to filter bank image representations. While in principle such 
methods may be able to learn the invariances underlying out-of-plane rotations, the amount 
of data needed to learn such invariances is likely to be impractical. Instead,, we addressed 
t@s iss'ue by means of deformable 3D face models. We fit 3D face models to the image 
plane, texture those models using the original image frame, then rotate the model to frontal 
views, warp it to a canonical face geometry, and then render the model back into the image 
plane. (See Figures 2,3,4). This allowed us to factor out image variation due to rigid head 
rotations from variations due to nonrigid face deformations. The rigid transformations were 
encoded by the rotation and translation parameters of the 3D model. These parameters are 
retained for analysis of the relation of rigid head dynamics to emotional and cognitive state. 

Since our goal was to explore the use of 3D models to handle out-of-plane rotations for 
expression recognition, we first tested the system using hand-labeling to give the position 
of 8 facial landmarks.' However the approach can be generalized in a straightforward and 
principled manner to work with automatic 3D trackers, which we are presently develop- 
ing [9]. 

' ~ l t h o u ~ h  human labeling can be highly precise, the labels employed here had substantial error 
due to inattention when the face moved. Mean deviation between two labelers was 4 pixels f 8.7. 
Hence it may be realistic to suppose that a fully automatic head pose tracker may achieve at least this 
level of accuracy. 

Figure 2: Head pose estimation. a. First camera parameters and face geometry are jointly 
estimated using an iterative least squares technique b. Next head pose is estimated in each 
frame using stochastic particle filtering. Each particle is a head model at a particular orien- 
tation and scale. 



When landmark positions in the image plane are known, the problem of 3D pose estimation 
is relatively easy to solve. We begin with a canonical wire-mesh face model and adapt it to 
the face of a particular individual by using 30 image frames in which 8 facial features have 
been labeled by hand. Using an iterative least squares triangulation technique, we jointly 
estimate camera parameters and the 3D coordinates of these 8 features. A scattered data 
interpolation technique is then used to modify the canonical 3D face model so that it fits 
the 8 feature positions [14]. Once camera parameters and 3D face geometry are known, 
we use a stochastic particle filtering approach [ l l ]  to estimate the most likely rotation and 
translation parameters of the 3D face model in each video frame. (See [2]). 

3 Action unit recognition 

Database of spontaneous facial expressions. We employed a dataset of spontaneous 
facial expressions from freely behaving individuals. The dataset consisted of 300 Gigabytes 
of 640 x 480 color images, 8 bits per pixels, 60 fields per second, 2: 1 interlaced. The video 
sequences contained out of plane head rotation up to 75 degrees. There were 17 subjects: 
3 Asian, 3 African American, and 11 Caucasians. Three subjects wore glasses. The facial 
behaviors in one minute of video per subject were scored frame by frame by 2 teams experts 
on the FACS system, one lead by Mark Frank at.Rutgers, and another lead by Jeffrey Cohn 
at U. Pittsburgh. 

While the database we used was rather large for current digital video storage standards, 
. in practice the number of spontaneous examples of each action unit in the database was 

relatively small. Hence, we prototyped the system on the three actions which had the most 
examples: Blinks (AU 45 in the FACS system) for which we used 168 examples provided 
by 10 subjects, Brow raises (AU 1+2) for which we had 48 total examples provided by 
12 subjects, and Brow lower (AU 4) for which we had 14 total examples provided by 12 
subjects. Negative examples for each category consisted of randomly selected sequences 
matched by subject and sequence length. These three facial actions have relevance to appli- 
cations such as monitoring of alertness, anxiety, and confusion. The system presented here 
employs general purpose learning mechanisms that can be applied to recognition of any 
facial action once sufficient training data is available. There is no need to develop special 
purpose feature measures to recognize additional facial actions. 

4-3 % 

a '  ' -* 
Frame 

I 
HMM Decoder 

Figure 3: Flow diagram of recognition system. First, head pose is estimated, and images 
are warped to frontal views and canonical face geometry. The warped images are then 
passed through a bank of Gabor filters. SVM7s are then trained to classify facial actions 
from the Gabor representation in individual video frames. The output trajectories of the 
SVM's for full video sequences are then channeled to hidden Markov models. 



Recognition system. An overview of the recognition system is illustrated in Figure 3. 
Head pose was estimated in the video sequences using a particle filter with 100 particles. 
Face images were then warped onto a face model with canonical face geometry, rotated to 
frontal, and then projected back into the image plane. This alignment was used to define 
and crop a subregion of the face image containing the eyes and brows. The vertical position 
of the eyes was 0.67 of the window height. There were 105 pixels between the eyes and 
120 pixels from eyes to mouth. Pixel brightnesses were linearly rescaled to [0,255]. Soft 
histogram equalization was then performed on the image gray-levels by applying a logistic 
filter with parameters chosen to match the mean and variance of the gray-levels in the 
neutral frame (1 31. 

The resulting images were then convolved with a bank of Gabor kernels at 5 spatial fre- 
quencies and 8 orientations. Output magnitudes were normalized to unit length and then 
downsampled by a factor of 4. The Gabor representations were then channeled to a bank 
of support vector machines (SVM's). Nonlinear SVM's were trained to recognize facial 
actions in individual video frames. The training samples for the SVM's were the action 
peaks as identified by the FACS experts, and negative examples were randomly selected 
frames matched by subject. Generalization to novel subjects was tested using leave-one- 
out cross-validation. The SVM output was the margin (distance along the normal to the 
class partition). Trajectories of SVM outputs for the full video sequence of test subjects 
were then channeled to hidden Markov models (HMM's). The HMM's were trained to clas- 
sify facial actions without using information about which frame contained the action peak. 
Generalization to novel subjects was again tested using leave-one-out cross-validation. 

Figure 4: User interface for the FACS recognition system. The face on the bottom right 
is an original frame from the dataset. Top right: Estimate of head pose. Center image: 
Warped to frontal view and conical geometry. The curve shows the output of the blink 
detector for the video sequence. This frame is in the relaxation phase of a blink. 

4 Results 

Classifying individual frames with SVM's. SVM's were first trained to discriminate 
images containing th6 peak of blink sequences from randomly selected images containing 
no blinks. A nonlinear SVM applied to the Gabor representations obtained 95.9% correct 
for discriminating blinks from non-blinks for the peak frames. The nonlinear kernel was of 
the form & where d is Euclidean distance, and k is a constant. Here k = 4. 

Recovering FACS dynamics. Figure 5a shows the time course of SVM outputs for com- 
plete sequences of blinks. Although the SVM was not trained to measure the amount of 
eye opening, it is an emergent property. In all time courses shown, the SVM outputs are 
test outputs (the SVM was not trained on the subject shown). Figure 5b shows the SVM 
trajectory when tested on a sequence with multiple peaks. The SVM outputs provide in- 



formation about FACS dynamics that was previously unavailable by human coding due to 
time constraints. Current coding methods provide only the beginning and end of the ac- 
tion, along with the location and magnitude of the action unit peak. This information about 
dynamics may be useful for future behavioral studies. 

J 
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Figure 5: a. Blink trajectories of S W  outputs for four different subjects. Star indicates 
the location of the AU peak as coded by the human FACS expert. b. SVM output trajectory 
for a blink with multiple peaks (flutter). c. Brow raise trajectories of SVM outputs for one 
subject. Letters A-D indicate the intensity of the AU as coded by the human FACS expert, 
and are placed at the peak frame. 

HMM's were trained to classify action units from thetrajectories of SVM outputs. HMM's 
addressed the case in which the frame containing the action unit peak is unknown. Two hid- 
den Markov models, one for Blinks and one for random sequences matched by subject and 
length, were trained and tested using leave-one-out cross-validation. A mixture of Gaus- 
si&s model was employed. Test sequences were assigned to the category for which the 
probability of the sequence given the model was greatest. The number of states was varied 
from 1-10, and the number of Gaussian mixtures was'yaried from 1-7. Best performance 
of 98.2% correct was obtained using 6 states and 7 Gaussians. 

Brow movement discrimination. The goal was to discriminate three action units Iocal- 
ized around the eyebrows. Since this is a 3-category task and SVMs are originally designed 
for binary classification tasks, we trained a different SVM on each possible binary decision 
task: Brow Raise (AU 1+2) versus matched random sequences, Brow Lower (AU 4) versus 
another set of matched random sequences, and Brow Raise versus Brow Lower. The output 
of these three SVM's was then fed to an HMM for classification. The input to the HMM 
consisted of three values which were the outputs of each of the three 2-category SVM's. As 
for the blinks, the HMM's were trained on the "test" outputs of the SVM's. The HMM's 
achieved 78.2% accuracy using 10 states, 7 Gaussians and including the first derivatives of 
the observation sequence in the input. Separate HMM's were also trained to perform each 
of the 2-category brow movement discriminations in image sequences. These results are 
summarized in Table 1. 

Figure 5c shows example output trajectories for the SVM trained to discriminate Brow 
Raise from Random matched sequences. As with the blinks, we see that despite not being 
trained to indicate AU intensity, an emergent property of the SVM output was the magni- 
tude of the brow raise. Maximum SVM output for each sequence was positively correlated 
with action unit intensity, as scored by the human FACS expert (r  = .43, t (42)  = 3 . 1 , ~  = 
0.0017). 

The contribution of Gabors was examined by comparing linear and nonlinear SVM's ap- 
plied directly to the difference images versus to Gabor outputs. Consistent with our pre- 
vious findings [12], Gabor filters made the space more linearly separable than the raw dif- 
ference images. For blink detection, a linear SVM on the Gabors performed significantly 
better (93.5%) than a linear SVM applied directly to difference images (78.3%). Using 
a nonlinear SVM with difference images improved performance substantially to 95.9%, 
whereas the nonlinear SVM on Gabors gave only a small increment in performance, also 



Action 

Blink vs. Non-blink 
Brow Raise vs. Random 
Brow Lower vs. Random 
Brow Raise vs. Brow Lower 
Brow Raise vs, Lower vs. Random 

% Correct 
(HMM) 

98.2 
90.6 
75.0 
93.5 
78.2 

Table 1: Summary of results. All performances are for generalization to novel subjects. 
Random: Random sequences matched by subject and length. N: Total number of positive 
(and also negative) examples. 

to 95.9%. A similar pattern was obtained for the brow movements, except that nonlinear 
SVMs applied directly to difference images did not perform as well as nonlinear SVM's 
applied to Gabors. The details of this analysis, and also an analysis of the contribution of 
SVM's to system performance, are available in [I]. 

5 Conclusions 

We explored an approach for handling out-of-plane head rotations in automatic recognition 
of spontaneous facial expressions from freely behaving individuals. The approach fits a 3D 
model of the face and rotates it back to a canonical pose (e.g., frontal view). We found that 
machine learning techniques applied directly to the warped images is a promising approach 
for automatic coding of spontaneous facial expressions. 

This approach employed general purpose learning mechanisms that can be applied to the 
recognition of any facial action. The approach is parsimonious and does not require defin- 
ing a different set of feature parameters or image operations for each facial action. While 
the database we used was rather large for current digital video storage standards, in prac- 
tice the number of spontaneous examples of each action unit in the database was relatively 
small. We therefore prototyped the system on the three actions which had the most exam- 
ples. Inspection of the performance of our system shows that 14 examples was sufficient to 
successfully learn an action, an order of 50 examples was sufficient to achieve performance 
over 90%, and an order of 150 examples was sufficient to achieve over 98% accuracy and 
learn smooth trajectories. Based on these results, we estimate that a database of 250 min- 
utes of coded, spontaneous behavior would be sufficient to train the system on the vast 
majority of facial actions. 

One exciting finding is the observation that important measurements emerged out of filters 
derived from the statistics of the images. For example, the output of the SVM filter matched 
to the blink detector could be potentially used to measure the dynamics of eyelid closure, 
even though the system was not designed to explicitly detect the contours of the eyelid and 
measure the closure. (See Figure 5.) 

The results presented here employed hand-labeled feature points for the head.pose track- 
ing step. We are presently developing a fully automated head pose tracker that integrates 
particle filtering with a system developed by Matthew Brapd for aubmatic real-time' 3D 
tracking based on optic flow [3]. 

All of the pieces of the puzzle are ready for the development of automated systems that 
recognize spontaneous facial actions at the level of detail required by FACS. Collection of 
a much larger, realistic database to be shared by the research community is a critical next 
step. 
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